
AD-A242 538

NAVAL POSTGRADUATE SCHOOL
Monterey, California

N OV 1 8 1991

THESIS

DESIGN IMPLEMENTATION INTO FIELD
PROGRAMMABLE GATE ARRAYS

by

Norman C. Messa

March 1991

Thesis Advisor: C. H. Lee

Approved for public release; distribution is unlimited

91-15192

J!~~~~~~~ ~~ ~ 3l 7lJJJ 1, il ~l iIli l

UNCLASSIFIED
SECU,,TY CLASSIFICATION OF THIS PAGE

Form Approved

REPORT DOCUMENTATION PAGE OMBNo 0704018e

la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

UNCLASSIFIED
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT

2b DECLASSIFICATIONiDOWNGRADING SCHEDULE Approved for public release;
distribution is unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
(If applicable)

* Naval Postgraduate School Naval Postgraduate School
6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City. State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

Ba NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8C. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROjECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO

11 TITLE (Include Security Classification)

DESIGN IMPLEMENTATION INTO FIELD PROGRAMMABLE GATE ARRAYS

12 PERSONAL AUTHOR(S)

MESSA, Norman C.
13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT

M*ster' ; Thp.zi : FROM TO 1991 March 104
16 SUPPLEMENTARY NOTATIO rhe views expressed in this thesis are those of the
author and do not reflect the official policy or position of the Depart-
ment of Defense or the US Gnvt-rnnjnt,,
17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identity by block number)

FIELD GROUP SUB-GROUP Field Programmable Gate Array; Logic Cell
Array

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

In the past three years a new type of programmable logic device has
emerged. The programmable gate array is a new approach to an old problem
of trying to implement logic designs in an efficient manner. This thesis
explores the implementation of design using the Field Programmable Gate
Array (FPGA). In particular, this thesis utilizes the XILINX develop-
ment system tools to implement design into the XILINX Logic Cell Array
(LCA). This thesis begins by defining the characteristics of the LCA and
then defines the characteristics of the Small Computer Systems Interface
(SCSI) which is used as a design implementation example. The XILINX
implementation method is then explored and a cor.plete design implementa-
tion study is conducted on the design example. Both Mentor Graphics and
Futurenet schematic capture tools are used for design entry. Following

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIPICATION
E UNCLASSIFIEDUNLIMITED C3 SAME AS RPT C] DTIC USERS T TTCT A T

22a NAME OF RESPONSIBLE INDIVIDUAL 2rb fnc" fn /ue AreaCode) 22c OFFICE SYMBOL
LEE, Chin-Hwa 408-646-2190 1 EC/Le J

DD Form 1473, JUN 86 Previous editions are obsolete SECufRITv CLASSIFiCAT ON Oc T[IS DAGE

S/N 0102-LF-014-6603 UNCLASSIFIED
i

UNCLASSIFIED

SECURI T i CL ASSIFI(CAT R)Or T H IS PA(E

19. cont.
design implementation, backannotated design simulation is performed

to study the effect of the LCA technology on design performance. The
results of this thesis showed that designs implemcnted using this
technology performed comparably to other implementation technologies.

Additionally, this implementation method allows design to be completed
in a significantly shorter time frame than previously possible.

DDForm1473. JUN 864' .. . ,

UNCLASSIFIED
ii

Approved for public release; distribution is unlimited.

Design Implementation
Into Field Programmable

Gate Arrays

by

Norman C. Messa
Lieutenant, United States Navy

B.S., Chapman College .

Submitted in partial fulfillment
of the requirements for the degree of ,.'

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the t -_

NAVAL POSTGRADUATE SCHOOL
March 1991

Author: ___

Nortnan e

Approved by:
n-HwaisAv

Murali Tummala, Second Reader

Michael A. Morgan, Miairman
Department of Electrical and Computer Engineering

iii

ABSTRACT

In the past three years a new type of programmable logic device has

emerged. The programmable gate array Is a new approach to an old problem

of trying to implement logic designs in an efficient manner. This thesis

explores the implementation of design using the Field Programmable Gate Array

(FPGA). In particular, this thesis utilizes the XILINX development system tools

to implement design into the XILINX Logic Cell Array (LCA). This thesis begins

by defining the characteristics of the LCA and then defines the characteristics

of the Small Computer Systems Interface (SCSI) which is used as a design

implementation example. The XILINX implementation method is then explored

and a complete design implementation study is conducted on the design

example. Both Mentor Graphics and Futurenet schematic capture tools are used

for design entry. Following design implementation, backannotated design

simulation is performed to study the effect of the LCA technology on design

performance. The results of this thesis showed that designs implemented

using this technology performed comparably to other implementation

technologies. Additionally, this implementation method allows design to be

completed in a significantly shorter time frame than previously possible.

iv

TABLE OF CONTENTS

I. INTRODUCTION 1

II. INTRODUCTION TO FIELD PROGRAMMABLE GATE ARRAYS 3

A. OVERVIEW 3

B. ARCHITECTURE OF THE LOGIC CELL ARRAY (LCA) . 5

1. Configuration memory 6

2. Input/output blocks (IOB's) 7

3. Configurable logic blocks (CLB's) 8

4. Interconnect 10

C. MODES OF CONFIGURATION 12

D. PROGRAMMING THE LCA 19

III. PRINCIPLES OF THE SMALL COMPUTER SYSTEM INTERFACE

(SCSI) 23

A. BASIC OPERATION 23

B. SCSI AS A STATE MACHINE 27

1. Bus free phase 29

2. Arbitration Phase 29

3. Selection Phase 30

4. Information transfer phase 31

IV. THE DESIGN PROCESS USING FIELD PROGRAMMABLE GATE

ARRAYS 33

A. OVERVIEW 33

B. DESIGN CYCLE ON A PERSONAL COMPUTER 34

C. DESIGN CYCLE ON AN ENGINEERING WORKSTATION 46

D. A COMPARISON OF DESIGN PLATFORMS 51

V. SCSI - A DESIGN EXAMPLE 52

A. OVERVIEW. 52

B. INITIAL DESIGN LAYOUT 53

C. DESIGN IMPLEMENTATION ON THE PC 61

D. DESIGN IMPLEMENTATION ON AN ENGINEERING

WORKSTATION 66

E. THE DESIGN VERIFICATION PROBLEM - PROTOTYPE VS

BACKANNOTATED SIMULATION 85

F. DESIGN CONSIDERATIONS 86

VI. CONCLUSIONS 88

LIST OF REFERENCES 90

INITIAL DISTRIBUTION LIST 91

vi

LIST OF FIGURES

Figure 1 Density comparison for three generations of LCA's

[from Ref. 3) 4

Figure 2 General structure of XC3020 LCA [from Ref. 1] 5

Figure 3 Configuration static memory cell [from Ref.

I) 6

Figure 4 XC3000 series LCA IOB [from Ref.1] 7.....7

Figure 5 XC3000 family LCA Configurable Logic Block [from

Ref. 1] 8

Figure 6 Combinational logic types available in XC3000

family LCA [from Ref. 1). 9

Figure 7 LCA interconnect and switching matrix [from Ref.

3). 10

Figure 8 LCA PIP's and switching matrix (from Ref. 1] 11

Figure 9 Direct interconnects [from Ref. 1] 12

Figure 10 General interconnect and switching matrix [from

Ref. 1).

Figure 11 LCA long lines [from Ref. 1). 13

Figure 12 XC3020 LCA structure (from Ref. 1] 14

Figure 13 Master Serial configured LCA [from Ref. 1] . 15

Figure 14 Master Parallel Mode configured LCA [from Ref.

11.. 16

Figure 15 Daisy-chained Slave Mode LCA's (from Ref.1] 17

Figure 16 Peripheral Mode configuration [from Ref. 1] 18

Vii

Figure 17 Slave Mode configuration [from Ref. 1] . . 19

Figure 18 LCA configuration process state diagram [from

Ref. 1] 20

Figure 19 LCA configuration data structure [form Ref.

] 22

Figure 20 SCSI device ID bits [from Ref. 4] 23

Figure 21 Typical SCSI configurations [from Ref. 4) 25

Figure 22 Non-arbitrating SCSI [from Ref. 4] 28

Figure 23 Arbitrating SCSI [from Ref. 4) 28

Figure 24 Design Entry to XNF translation [from Ref.

I] 38

Figuze 25 Optimization and mapping (from Ref. 1] . . 39

Figure 26 Merging of mapped files [from Ref. 1] . . . 40

Figure 27 Translating to an LCA file [from Ref. 1) . . 41

Figure 28 Placing and routing the LCA file [from

Ref.1]. 42

Figure 29 Bitstream generation [from Ref. 1] 43

Figure 30 Real-time in circuit verification [from Ref.

1]. 44

Figure 31 LCA backannotation [from Ref. 1] 45

Figure 32 Simulation timing diagram [from Ref. 1] . . 46

Figure 33 XC3020 prototype board 47

Figure 34 Apollo Workstation Design path [from Ref. 1] 48

Figure 35 Apollo design flowpath [from Ref. 5] 49

Figure 36 Backannotation of LCA design [from Ref. 5) . 51

Figure 37 NETED schematic of BUSFREE circuit 54

viii

Figure 38 QUICKSIM timing diagram of BUSFREE circuit 54

Figure 39 NETED schematic of ARBIT circuit 55

Figure 40 QUICKSIM timing diagram of ARBIT circuit with

arbitration lost 55

Figure 41 QUICKSIM timing simulation of ARBIT with

arbitration won 56

Figure 42 NETED schematic of SELECT circuit 56

Figure 43 QUICKSIM timing simulation of SELECT circuit 57

Figure 44 NETED layout of SELTAR circuit 57

Figure 45 QUICKSIM timing of SELTAR circuit when

selected 58

Figure 46 QUICKSIM timing of SELTAR circuit when not

selected 58

Figure 47 NETED schematic of INFOTRAN circuit 59

Figure 48 QUICKSIM timing simulation of INFOTRAN

circuit 59

Figure 49 FUTURENET schematic of BUSFREE circuit . 61

Figure 50 FUTURENET schematic of ARBIT circuit 62

Figure 51 FUTURENET schematic of SELECT circuit . . 63

Figure 52 FUTURENET schematic of SELTAR circuit 64

Figure 53 FUTURENET schematic of INFOTRAN circuit 64

Figure 54 LCANETED schematic for BUSFREE circuit 68

Figure 55 Timing simulation of unrouted BUSFREE

circuit 69

Figure 56 Timing simulation of routed BUSFREE circuit 70

Figure 57 LCANETED schematic of ARBIT circuit 70

ix

Figure 58 Timing simulation of unrouted ARBIT circuit

with arbitration won 71

Figure 59 Timing simulation for unrouted ARBIT circuit

with arbitration lost 72

Figure 60 Timing simulation for routed ARBIT circuit with

arbitration won 72

Figure 61 Timing simulation for routed ARBIT circuit with

arbitration lost 73

Figure 62 LCANETED schematic for SELECT circuit . . 74

Figure 63 Timing simulation for unrouted SELECT

circuit 74

Figure 64 Timing simulation for routed SELECT circuit 75

Figure 65 LCANETED schematic of SELTAR circuit . . 76

Figure 66 Timing simulation of unrouted SELTAR circuit 76

Figure 67 Timing simulation of routed SELTAR circuit 77

Figure 68 LCANETED schematic of INFOTRAN circuit . 77

Figure 69 Timing simulation of unrouted INFOTRAN

circuit 78

Figure 70 Timing simulation of routed INFOTRAN circuit 78

Figure 71 LCANETED schematic for completed SCSI

design 79

Figure 72 Timing simulation of unrouted SCSI circuit 80

Figure 73 Timing simulation of routed SCSI circuit 80

Figure 74 LCA placement and routing of SCSI design 84

LIST OF TABLES

Table I LCA CONFIGURATION MODES [from Ref. 1] 21

Table II LCA DESIGN MEMORY REQUIREMENTS [from Ref. 1] 35

xi

ACKNOWLEDGEMENTS

I wish to thank my Thesis Advisor Dr. Chin-Hwa Lee for his

guidance and suggestions during the course of this project.

I would also like to thank my second reader Dr. Murali Tummala

for his many constructive suggestions. I would also like to

offer a special thanks to Ms. Jennifer Tran of XILINX whose

patience and perseverance were of immeasurable help in the

initial stages of this project. Lastly, I would like to thank

my daughter Rebecca for her Love and understanding which

enabled me to complete this thesis.

xii

I. INTRODUCTION

In this thesis the Field Programmable Gate Array (FPGA)

was examined as a design medium for implementation of small to

medium sized designs. The FPGA is studied here from a design

implementation standpoint with emphasis concentrated on design

ease, reliability and desian verification. A key question of

interest to be answered in this thesis is with regard to how

well do designs implemented using FPGAs perform as compared to

other implementation technologies. This study started by

examining the FPGA technology and device characteristics. A

description of the Small Computer Systems Interface (SCSI)

provided the guidel2ines for a design implementation example

discussed later in this thesis. The actual design

implementation process was then examined followed by an

actual design implementation example of a SCSI device which

took the design from conception and schematic capture to

hardware implementation. In this thesis two different design

platforms were used, and a comparison of the design processes

was made. Additionally, timing simulation was performed on

implemented designs to examine the effects of FPGA technology

on design performance.

In this thesis, Chapter II will provide a description of

the Logic Cell Array (LCA) technology which will be followed

by a discussion of the SCSI communication protocol in Chapter

III. Chapter IV will provide insight into the actual design

implementation process utilizing the XILINX development tools.

Chapter V will go through a complete design implementation

example from design entry to the actual design placement and

routing into an LCA. Several conclusions and observations

have been made as the result of this work which are summarized

in Chapter VI.

2

II. INTRODUCTION TO FIELD PROGRAMABLE GATE ARRAYS

A. OVERVIEW

In this chapter, the characteristics of the Field

Programmable Gate Array (FPGA) is discussed with regard to its

functionality, configurability and operation. Information in

this chapter is derived from References 1, 2 and 3. The FPGA

is a device in which small to medium sized designs may be

accommodated. It is an alternative form of Application

Specific Integrated Circuit (ASIC) in lieu of Programmable

Logic Devices (PLDs), fixed gate arrays or full custom

integrated circuits. There are currently two main

technologies for FPGA. The first, XILINX, utilizes an

architecture that is fully re-programmable with configuration

controlled by software. The second, ACTEL, utilizes anti-fuse

technology making it one time programmable. In this thesis

the XILINX technology will be explored exclusively because of

the re-programmability. The XILINX FPGA is refered to as a

Logic Cell Array (LCA) by the industry as well as in this

thesis (Logic Cell is a XILINX trademark). The XILINX LCA is

an array of logic blocks that are configured and

interconnected via software that is downloaded into the LCA at

either power-up or any other time the designer desires in a

re-program mode. This later characteristic allows the LCA's

3

configuration to be a function of time. As the technology

stands today it is currently in its second generation. The

first generation XC2000 series LCAs could hold designs as

large as 1800 gates whereas the second generation XC3000

series LCAs can hold designs up to 9000 gates. As to the

future, the planned third generation XC4000 series LCAs will

allow for designs up to 20000 gates. Both the XC2000 and

XC3000 series LCAs are currently available in production

quantities. The XC4000 series LCAs will be available

sometime within the next year. Figure 1 shows the density

comparison of the three generations of XILINX LCA's. In this

thesis design consideration was given to both XC2000 and

XC3000 LCA's.

Density Comparison
Max Typical

Gates Utilization XC2000 XC3000 XC4000

1200 800 2064 --.

2000 1200 2018 3020 --
3000 2000 -- 3030 4002
4200 3000 -- 3042 4003
6400 4000 -- 3064 4004
9000 5000 -- 3090 4005
-- 6000 .-- 4006
-- 8000 4008
-- 10000 4010
-- 13000 4013
-- 16000 4016
-- 20000 4020

Figure 1 Density comparison for three generations of LCA's
(from Ref. 3]

4

B. ARCHITECTURE OF THE LOGIC CELL ARRAY (LCA)

IO BLOCKS

' " THREE-STATE BUFFERS WITH ACCESS CONFIGURABLE LOGIC
TO HORIZONTAL LONG LINES BLOCKS

INTERCONNECT AREA
P

-4- 4- CNIURATION MEMORY

Figure 2 General structure of XC3020 LCA [from Ref. 1]

The XILINX LCA architecture consists of three major

components:

*Configurable Logic Blocks (CLBs)

*Input/Output Blocks (lOBs)

*Interconnect

In addition, configuration memory is used to holti the

configuration program bits which control the configuration of

CLRM, IOBs and interconnect. Figure 2 shows Uhe general

structure of the XC3000 family LCA. On the perimeter,

configurable Input/Output Blocks (OBs) provide the interface

5

between the package pins and the internal array of

configurable logic. The Configurable Logic Blocks (CLBs) are

arranged in an array with the interconnect programmed to form

networks carrying signals between IOBs and CLBs. The

functions implemented in the LCA are controlled by a

configuration program which is loaded into an internal

distributed array of configuration memory.

1. Configuration memory

Configuration memory consists of a distributed array

of static memory cells (see Figure 3). During configuration

CONFIGURATION
- CONTROL

READ or !

DATA J--

Figure 3 Configuration static memory cell [from Ref. 1]

the cell is written through the data line and is read through

the data line during readback. During normal operation the

pass transistor is off, and continuous configuration control

is provided. There are five methods for loading configuration

program data into configuration memory. Two methods load the

data serially and three methods load the data in a byte wide

parallel manner.

6

2. Input/output blocks (IOBs)

Figure 4 shows an lOB for an XC3000 family LCA. it

provides the interface between the external package pin and

the internal configurable logic. It is also the means by

which the configuration program is loaded into the LCA during

the program or re-program phases of LCA operation. It allows

PROGR1AM CONTIRoL IED ME MoRy CC I vcS

OUT TAIF OUTPUT SLEW PASSIVE

NVFT INVE 4T SELECT RATE PULL LUP

THREE STATF t4-

(0OUTPUT Ti -- __

DIEC Irj- 4-O TP

FLIT' I3UIFER

FL OP C

05,~~~I/ PAD(LBA ES

DIREC T (IN E (- - RGAM AL-INECNECINPIN I

FgreTRD 14 XC30 0 serie <1A -O fomRf

for~~FLT ete reitrdo dict ipus Ec IBha

programmablFLeI cost otu ufe ht a edrvnb

either~~0 aIeitrdoradrc Nupu inl Seii

configurationTCT TfteH sdt rieOd b h otnso h

progam ontolld meorycels. gloal ese isals

ok k GLBALREET

incorporated. This global reset is important on the initial

configuration to have all flip-flops reset for proper and

reliable operation.

3. Configurable logic blocks (CLBs)

Figure 5 shows a Configurable Logic Block (CLB) for an

XC3000 family LCA. The CLB's provide the functional units

DATA IN di

0

F
DIN
G

Ox

.a F _ _ _ _I _

b -
LOGIC 0 COMRINA70RIAI

VARIABLES d FUNCIION jCL80UIPUIS

ENABLE CLOCK - _ _ec

CLOCK - -

RESET - rd

"0 (INHIBIT)

(GLOBAL RESET)

Figure 5 XC3000 family LCA Configurable Logic Block [from

Ref. 1]

through which the user's design is implemented. The CLBs are

arranged in an array (8 x 8 in the case of the XC3020) with

two letter designations corresponding to the row and column

where they are situated. The XC3000 family LCAs accomodate up

8

to five logic variables. The combinatorial logic section of

the CLB utilizes a 32 by 1 lookup table to implement boolean

functions. Figure 6 shows the combinational logic types

available.

A -

C -

F -

A
I-

ox--
- ED -ANYrkUNCjiO

VARIABL ES
C--
0-

E 5a

A-

Ox -rF

OYANY rUNC~TON ~
oY ___Of 5VAflIAB[E S

5b

ox
ANY FUNCTKON

OY orUP To 4VARIABLES
C

family~o LUP fro Re.A

9

4. Interconnect

The programmable interconnects in the LCA serve to

connect inputs, outputs and CLBs into logical networks. CLB

interconnects are physically comprised of two-layer metal-

ization. In Figure 7 the pass-transistors, each controlled by

a configuration bit from the configuration program form

V1 V2 V3 V4 WS

M*Wo-O boo Hi

2H

H3
.3

H, c oow I I I I

V "

Figure 7 LCA interconnect and switching matrix [from Ref.
3]

Programmable Interconnect Points (PIPs) and switching matrices

make-up the connections between the metal segments and the CLB

pins (see Figure 8). There are three types of programmable

10

interconnect available in the LCA:

" General Purpose Interconnect

" Direct Interconnect

" Long Lines

The general purpose interconnects shown in Figure 8 are metal

INTERCONNECT SWITCHING
"PIPs" MATRIX

. ,. ~ .. G-E:
• . ..

HE .H

lii
CONFIGURABLE INTERCONNECT

LOGIC BLOCK BUFFER

Figure 8 LCA PIP's and switching matrix (from Ref. 1]

segments that run between the rows and columns of CLBs Joined

on each end by a switching matrix shown in Figures 9 and 10.

Switching matrix connections are controlled by bits in

11

.. :: UTT TJ

F

Figure 9 Direct interconnects [from Ref. 1]

configuration memory. Direct interconnects are high speed

segments for connecting IOBs with nearby CLBs (see Figure 9).

Direct interconnect can also be used to connect adjacent CLBs.

Long lines are special lines that run nearly the entire length

and width of the chip and bypass all switching matrices.

These can be used to transfer signals that must be

routed a long distance. This is done to minimize signal skew

(see Figure 11). Figure 12 shows the entire XC3020 LCA which

is capable of implementing designs up to 2000 gates in size.

Additionally, the LCA has the capability of providing its own

internal oscillator.

C. MODES OF CONFTGURATiON

There are five modes of operation that the LCA may be

configured. These modes specifically deal with how the

12

:-i I
MATrIIX

Figure 10 General interconnect and switching matrix [from
Ref. 1]

3 VERTICAL LONG LINES

BUFFER .. .

ON-CHI : 2 . 7
THREE STATE r r...

BUFFERS , *:. . '.

PULL-UPRESJST"ORSt. : " f-..

FOR ON HIPO.
OPEN DRAIN

SIGNALS CDOG 9E::u -:::. 2,HORIZONTAL LONG L,,NES"'

V. . .

Figure 11 LCA long lines [from Ref. 1]

configuration program is transferred from some external device

into the LCA's configuration memory. The five modes are:

" Master Serial Mode

" Master Parallel Mode

13

C_ to, t .p : ° J ' ~: : °

cj Li U- U .'

p p p ,",0 '

.,_ [L) U ",LI [U". , ' I L ThL,!
o J o .'0 -. o

IL'. LI I L"

In any ofth Mate moe , Ue L, u;tomatical od

I,', LI'.' U [',' -

aL~ 7)"U," L) U v,' L" U'

aWWeD ",A "ct s1 FigueF 13rn "rcI daai

Figure 12 XC3020 LCA structre Ifrom Ref. 1]

s Peripheral Mode

" Slave Mode

" Daisy Chain Mode (with Master or Peripheral Mode leader)

In any of the Master modes, the LCA automatically loads its

configuration data from some external memory devJ.c:e. In

Master Serial Mode (see Figure 13) configuration data is

loaded into the LCA via the DATA IN pin (DIN) from a

synchronous serial source. XILINX can provide a serial

configuration PROM specifically for that purpose. In Master

Parallel Mode (see Figure 14) configuration data is provided

a byte at a time to the DO-D7 pins as a result of a 16 bit

address generated by the LCA from pins AO-A15. There are two

14

TT, Ifl ECCASTl I lr pu

BU' I ALLOWS W I
RE USERIIO L -

M?

GE NEAL NA c

rUn,'CSE -I (-C
05~110

PPIs

SOTNR

LCA
ODEONAI
IENTIAA SLA VE
ICA. CONr ' URED
TIWE SAME

°5V

D'" DATA SeA

CCLVM %l CASCADED
SEIMALtDC CE CEO

TUEOE YC'TIR

It R SETS ti1 l XCT736AOOF SS PTO E

(OJ U "

DNIO~TJ'iUII

V0 FTOA 3VEW LM 11A,I.A DASYCEIA.

Figure 13 Master Serial configured LCA [from Ref. 1]

variations to the Master Parallel mode. Master Parallel Low

brings configuration data into the LCA starting at address

0000 while Master Parallel High brings configuration data into

the LCA starting at address FFFF. This provides compatibility

with microprocessors that begin program execution fr'om low

memory and incr-men'. as well as those that begin program

execution from high memory and decrement. The final Master

Mode variation is Master Mode (S-rial or Parallel) with daisy-

chained slaves (see Figure 15). The configuration clock

15

USE R coOT OF "N"I -F1H
VORDERA PFTM ADORE SS BITSCAN BE USED T0 SELECT MOM1.

F1ALTERNIATIVE CONFIKIIITATI01'S

WMOLI PINROWN

5 ki DOUT

W.4 CCLK A

-HOC

G ENERAL.
PURPOSE - CLK AId -

UISER V0
PINS - MT (SC3000) A13 - EPROM

(2K . 8

OTE Al?2 OR LARGER)

fo OPINS AllLC Al Al

RESET RESET A9 A9

07 As As

06S A7 AT 0?

05 AS - AS 06S

04 AS - AS OS

03 A4 A4 04

02 A3 - A3 03

0l A2? A2 0?

DO AT Al Dl

A0 AO Do

LC OE

DONE DIP CE

-4I
DATA BUS

(OU~tPT ADDRESS

00-07 PRO" BYTE IN

IOUTPEO()

S CCLII

(OUTPU.T)

Figure 14 Mlaster Parallel Mode configured LCA (from Ref. 1]

(CCLX) from the master LCA is provided to the slave LCAs and

their serialized data is passed from DOUT to DIN do~qn the

daisy-chain. The serial configuration bit stream is passed

down the daisy-chain synchronized to CCLK. on the leading

edge of CCLK data comes into DIN and is passed to DOUT on the

trailing edge of CCLX. In Peripheral Mode (see Figure 16) the

16

COJ It TW1WN I PVD") I

1C ... StLAII

IO KJLOC W04 CAN-fl

r ') o runlosrrvppfoSF
PNS 11 li UUI O USMRb*O

mvr' AN~f AMAA~fC

/ 02 A) A3 D SEOMO OE ASOFEF 6A 4 OY F!XT
tOt ? A2l) TWWOA CW"I To ALLOW WCW1 t C/

OF Al AlVAITATVFOM N CLE5 STATE ITiF

>SlS~I4 DO~ At A__ __ 01lAO
AJ

Figure 15 Daisy-chained Slave Mode LCA's [from Ref.1]

LCA is treated as a processor peripheral arnd configuration

data is sent to it in a byte-wide fashion. A bjkte of

configuration data is absorbed by the LCA for each processor

write cycle. In this mode, daisy-chaining with slave LCAs is

ailso permitted. This mode is most useful since it allows the

LCA to be reconfigured at any time. The implication of this

is that an LCA can be used to serve many functions and occupy

the same space. This would be important in any space limited

situation. The final mode in which an LCA can be configured

is the Slave Mode (see Figure 17). In this mode, serial

configuration data is strobed into the LCA one bit at a time.

The source of the configuration data may be a previous slave

LCA in a daisy-chain, a Master or Peripheral Mode LCA, or any

other processor.

CeONYF1x An~7~ss nATA-J

OWN

00-7 00-7 CCX-

EFCOOEF CO M

.5V ICA

-- CS USE -- RO0US

CCS2

00K'S

CCIJ7 RW7FRNit

REVA00R m

O~1~TALSLAE OO FC. ~AAISV*AF

Figure~~~~~~~~~ 1 Peierl od cnfgRTio fo e.

CS? _ZLZZ18 \QNQ

W MI PWRDWN
MICRO 5

COMPL17ER

STRB - CCK I L

D0 DIN DOU W

DI HDC

VC D? -2 OC GENER AL
PORT .5V PURPOSE

D3 'CA USERW

04
S OIlIER

05 -O PNS

D- O

RESET RESET

DI-

CCLK

DOU BIT N -I BIT N
(OUTPUT)

-FOR OPI$OtNAL SLAVE WDE ICA, IN A DAISY CHAIN

Figure 17 Slave Mode configuration [from Ref. 1]

D. PROGRAMMING THE LCA

Figure 18 shows a state diagram for the LCA configuration

process. The mode with which the LCA is configured is

determined by the input level on the three mode pins; MO, Ml

and M2. Table 1 summarizes the configuration alternatives.

It should be noted that configuration of an LCA is one trait

that separates it from the more conventional logic devices

(i.e., PLIs and full custom Gate Arrays). The LCA is

configured rather than programmed although the two terms have

been used interchangeably. The programming is done externally

to the LCA in either a fixed memory device like an Erasable

Programmable Read Only Memory (EPROM), a serial PROM, or a bit

19

POWF R ONDE LAY IS
2" CyCt[S Von NON M.ASTER MODE- It 1033 mS
2- CyCIIS F011 MASTER MOE-43 10 130 MS

USER vQ PINS WrI1 tilGI IMPEDANCE Pot I UP

III SIGNAL. LOW 1C3000) NO1K IID. h
__________ _______0_1_Pot

L
.U0

P O W E RSO N A GIC

-2CYCLEA O 1116 XC -9 10 NO0 OPRAIOA-33 CSLE CFOR)G111IO START-2 UP6 MODcowiCYCLESo R hI ACTIVE25 10 D PIN POGRM S

FiguRYe LAcniuainpocs tt iga fo
Ref.V 1]ET

stream ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ PEAE thtiOtrdiNete eoyo sm te yeo
storage medium CofguainOfteGCInvle Cta

transferring ~ ~ LO the configuration biAteaNnoth C'

configraionmmr el.Tefrt tpi rgamn h

vaiation of +5 dofiueatiodifrein process and darm fo

steperat wich wille allowithe tmr or count taerte of

atofato ofefur. toensiurtatny slvedie the LCA mstays

betrivsering are initiaiged.ato the endeof intaiztion the

LCA entrhe CTILEAIO phsphee T cleiiars cofiuato

wil onine ntl 1-bt imr unin of f 20M~

Table I LCA CONFIGURATION MODES [from Ref. 1]

MO Ml M2 Clock Mode Dala

0 0 0 aclivn Masler [i qerinl

0 0 1 aclivP Maslnr By'n Wide Addr. = 0000 up

0 1 0 - 1Psr'vrd -

0 1 1 aclivP Maslor [Byle Wide Addr. - rrr down

1 0 0 - rnrvr'd -

I 0 1 pnsivn Peoipihnrnl Ebyl Wide
1 1 0 - ns vor -

1 I 1 p ssive SlavP BiI Serial

memory. When the INITIALIZATION and CLEAR phases have

completed, it is indicated by an active low INIT signal

(available only on XC3000 family). At this point the

CONFIGURATION phase begins. The configuration program header

contains a length count of the configuration data to be

transferred to the configuration memory. Figure 19 shows a

typical format of a configuration program. When LCAs are

daisy-chained, the preamble and length count are shifted into

the LCA on the leading edge of the configuration clock (CCLK)

and shifted out on trailing clock edges. Once an LCA has

received a preamble and length count, DOUT goes high until the

LCA has absorbed the appropriate number of frames. This

method allowi several configuration programs to be stored on

one EPROM. When configuration memory is full and the'length

count agrees, the LCA will startup and become operational.

During startup user I/O pins become active and can be defined

to be either TTL or CMOS compatible voltage levels. At this

point the device configuration data stored in the LCA will

21

1111111 -DUMMY BITS"
0010 - PREAMBLE CODE

24-BIT LENGTH COUNT. - CONFIGURATION PROGRAM LENGTH]EN
III -DUMMY BITS (4 BITS MINIMU)

0 . DATAFR.AME 8001 •1 . FOR xc3mO
0 .DATAFRAME to02. III
0 . DATA FRAME 8 003 . 111 197 CONFIGURATION DATA FRAMES PROGRAM DATA

(EACH FRAME CONSISTS OF:
A START BIT(0) REPEATED FOR EACH LOGIC
A 71-BIT DATAFELO CELL ARAY I A DAISY CHAIN

0 . DATA FRAME 8 196 . III THREE STOP BITS
0 . DATA FRAME 8 197 I III

III POSTAMBLE CODE (4 BITS '4&Jml

'THE LCA DEVICES REQUIRE 4 DUarY fITS MIN. XACT 2 10 GENERATES 8 DUMMY BITS 11M M

Device XC3020 XC3030 XC3042 XC3064 XC3090

Gates 2000 3000 4200 6400 9000

CLBs 64 100 144 224 320
Row X Col (8X8) (10X 10) (12 X 12) (16X 14) (20 X 16)

lOBs 64 80 96 120 144

Flip-flops 256 360 480 688 928

Bits pe frame 75 92 108 140 172
(w/I1 start 3 stop)

Frames 197 241 285 329 373

P-gram Data - 14779 22176 30784 46064 64160
its "Frames. 4

(excludes header)

PROM size (bits) - 14819 22216 30824 46104 64200
Program Data
+ 40 bit Headers

Figure 19 LCA configuration data structure (form Ref. 1]

totally specify its functionality and interconnect. At any

time, the LCA configuration memory may be re-programmed thus

totally changing the characteristics and functionality of the

LCA.

With an understanding of the LCA technology this thesis

will now look at an actual design. In Chapter III the design

example of SCSI will be defined.

22

III. PRINCIPLES OF THE ShALL COMPUTER SYSTEM INTERFACE (SCSI)

A. BASIC OPERATION

The purpose of this chapter is to introduce the basic

concepts of the Small Computer Systems Interface (SCSI)

protocol. The information contained in this chapter is

derived from Reference 4. This protocol will be used as the

basis for a design example to demonstrate the methodology

behind implementation of design into a FPGA. It will also be

used as a benchmark to evaluate FPGA technology performance.

DB(7) DB(b) 08(5) 08(4) 08(3) 08(2) 08(1) OB(61 <-- DATA BUS

SCSII I I

I SCSI ID I
SSI 1 2
SCS = ID D

SCSI I D =

SCSI ID = 5

SCSI ID =b

SCSI ID 7

Figure 20 SCSI device ID bits [from Ref. 4]

23

The SCSI is a protocol that allows asynchronous or

synchronous bidirectional communication between two devices.

It allows for priority arbitration when more than one device

is trying to use the bus. It allows specific target device

addressing from the controller. Information is transfered via

an asynchronous handshaking protocol. Information is

transfered via a common data bus and may take the form of

data, control signals or messages. The basic SCSI allows

communication between only two SCSI devices at any one time.

There is a maximum 'I eight SCSI devices that can be connected

to the SCSI b-.e In this thesis the only SCSI of interest is

the origizlx asynchronous SCSI standard design. Later SCSI

designs such as SCSI-II are not considered. Here, only non-

parity systems are considered. Each SCSI device will have a

unique SCSI ID which is actually a bit pattern assigned to it

(see Figure 20). When two SCSI devices communicate on the

bus, one acts as an initiator and the other acts as a target.

For example, a host computer (the initiator) transfering

information to a disk controller (the target). Figure 21

shows two examples of typical SCSI configurations. Each

target may have seven additional SCSI peripherals attached to

it. Using extended messages it is possible to address up to

2048 peripheral devices per target. The initiator has control

of certain SCSI bus functions while the target has control of

the rest. The initiator may arbitrate for the SCSI bus and

select a particular target while the target may request the

24

Peripherot devices such as
ria~netc-sk<s, prienters,

op catdiss, nd riognetic-

SCSI B US nioe

SINGLE INITIATOR, SINGLE TARGET

COMIPUTER ~4 SCSI BUS OnOIe

SINGLE INITIATOR, MULTIPLE TARGET

6*6*

MULTIPLE INITIATOR, MULTIPLE TARGET

IFigure 21 Typical SCSI configurations (from Ref. 4]

25

transfer of command, data, status or message information.

Information transfers on the data bus are asynchronous and

utilize a REQ/ACK handshake protocol with each byte transfered

requiring a handshake.

There are eighteen SCSI bus signals which are summarized

as follows:

" BSY (Busy) indicates that the bus is being used.

" SEL (Select) is a signal used by the initiator to select
a target.

" C/D (Control/Data) is a signal driven by a target to
indicate whether control or data information is on the
data bus.

• I/O (Input/Output) is a signal driven by the target to
control data direction with respect to the initiator.

" MSG (Message) is a signal driven by the target during the
message phase.

" REQ (Request) is a signal driven by the target to indicate
a request for a REQ/ACK handshake.

" ACK (Acknowledge) is a s4gnal driven by the initiator to
indicate acknowledgement of a REQ/ACK handshake.

" ATN (Attention) is a signal driven by the initiator to
indicate an attention condition.

" DB(O-7,P) (Data Bus) is eight bit data plus a parity bit
which make up the SCSI data bus. Use of the parity bit is
optional.

There are several timing definitions that should be

included in any SCSI design to provide standardization. They

are as follows:

26

ARBITRATION DELAY (2200 nS) is the minimum time a SCSI
device shall wait from the time that it arbitrates for the
SCSI bus until it checks to see if it arbitration has
been won.

ASSERTION PERIOD (90 nS) is the minimum time REQ or ACK
are asserted during synchronous data transfer.

BUS CLEAR DELAY (800 nS) in the maximum time allowed for
a SCSI device to quit driving all SCSI bus signals.

BUS FREE DELAY (800 nS) is the minimum time that a SCSI
device must wait from the time that it detects that the
bus has been free for 400 nS before it can enter the
arbitration phase by asserting BSY.

BUS SET DELAY (1800 nS) is the maximum time for a SCSI
device to assert BSY and put it's own SCSI ID bit on the
DATA BUS after it enters the bus free phase.

BUS SETTLE DELAY (400 nS) is the time to wait for the SCSI
bus to settle after changing bus control signals.

CABLE SKEW DELAY (10 nS) is the maximum difference in
propagation time between any two SCSI bus signals.

" DESKEW DELAY (45 nS) is the minimum time required to allow
for deskewing signals.

" DATA RELEASE DELAY (400 nS) is the maximum time for an
initator to shift from sending data to receiving data.

" HOLD TIME (45 nS) is the minimum time that the SCSI device
must wait after asserting REQ or ACK prior to changing the
data on the SCSI data bus.

" RESET HOLD TIME (25000 nS) is the minimum time RST must be
asserted.

" SELECTION ABORT TIME (200000 nS) is the maximum time that
a target has to respond to selection.

B. SCSI AS A STATE MACHINE

The SCSI may be looked at as a state machine. Depending

on the particular implementation however, it may or may not

27

RCMMAND orFIBU S FREELECTION DAT o

Figure 22) o - rb t at n SCS [f o Ref 4]CIU

FREE TRTD oe Dh eS ATS or

.I- MESSAGEPhs

RESET condition

Figure 23 Arbitrating SCSI [from Ref. 4]

contain all of the states. Figure 22 shows a three state

non-arbitrating SCSI while Figure 23 shows a four state

arbitrating SCSI. The implementation chosen for use in this

thesis is one with full arbitration capabilities. The basic

28

SCSI design involves a state machine with four states which

are:

. BUS FREE PHASE

. ARBITRATION PHASE

. SELECTION PHASE

. INFORMATION TRANSFER PHASE

1. Bus free phase

The SCSI device is in this phase when no other SCSI

device is using the bus and the bus is available. To enter

this phase, BSY and SEL must both be false for at least one

bus settle delay (400 ns). It is also required that any other

SCSI device that was driving the bus must release the bus

within a bus clear delay (800 ns) after BSY and SEL have been

false for a bub settle delay (400 ns).

2. Arbitration Phase

This phase allows one SCSI device to take control of

the bus even when another device tries to gain control. The

SCSI ID bit is the vehicle for accomplishing this. Since each

SCSI device has a unique SCSI ID bit the device with the bit

in the most significant position will win the arbitration and

the other device request will be masked. The device that

loses arbitration goes back to wait for the bus free phase to

be detected.

29

When a SCSI device detects bus free, it waits a bus free

delay (800 ns) and then asserts BSY as well as puts its SCSI

ID bit on the SCSI data bus. After an arbitration delay (2200

ns) from the assertion of BSY to ensure that any other device

that wants to compete for the bus have had the opportunity to

do so, the SCSI device will read the data bus to determine

whether or not there exists a device with a higher order SCSI

ID bit. If there is not, the device has won the arbitration

and it asserts SEL. If there exists a higher SCSI ID bit on

the data bus, the device loses the arbitration, releases BSY

and its own SCSI ID within a bus clear delay (800 ns) and

waits for bus free.

3. Selection Phase

In this phase the initiator will select a target to

either write to or read from. At the beginning of this phase,

BSY and SEL have both been asserted by the initiator and a bus

clear delay plus a bus settle delay have passed (1200 ns).

The SCSI device becomes the initiator by releasing I/O which

is driven by the target. The initiator sets the data bus to

the logical OR of its own SCSI ID and the target SCSI ID. The

initiator waits 2 deskew delays (90 ns) and releases BSY. The

initiator then waits at least a bus settle delay (400 ns) for

a response from the target. The target determines that it has

been selected when SEL and its own SCSI ID bit which was

placed on the data bus by the initiator are true and BSY and

30

I/O are false. If, upon examining the data bus, a SCSI device

determines that it is a target of some initiating SCSI device,

it asserts BSY. After 2 deskew delays (90 ns) the initiator

releases SEL.

4. Information transfer phase

This is the state where the SCSI normally operates.

During this phase data, commands, status, and messages are

transfered between the initiator and the target. The target

drives C/D, I/O and MSG to setup different types of

information transfer. The target will set I/O to true to

transfer information from the target to the initiator and will

set I/O to false to transfer information from the initiator to

the target. To send information from the target to the

initiator, the target drives the data bus. The target starts

by setting I/O true. The target asserts REQ and after one

deskew delay plus a cable skew delay (55 ns) to ensure valid

data, the initiator reads the data bus. The initiator then

asserts ACK. When ACK is true at the target, the target may

change or release the data bus. The target then negates REQ

and the initiator negates ACK. This process is then repeated

byte by byte until no further information is to be trans-

ferred. To transfer information from the initiator to the

target, the target sets I/O to false and asserts REQ. After

one deskew delay plus a cable skew delay (55 ns) the initiator

asserts ACK to let the target know that there is valid data.

31

The target then reads the data bus and then negates REQ to let

the initiator know that it can change the data bus. After REQ

is false at the initiator, the initiator may change the data

bus. The initiator then negates ACK to let the target know

that it can send another byte if it is ready. This process is

repeated until there is no more information to be sent.

There are four types of information that can be sent over

the SCSI bus. They are:

" DATA which can go in either direction

" COMMAND which goes from initiator to target

" STATUS which goes from target to initiator

" MESSAGE which can go in either direction

The type of information that is sent over the SCSI bus is a

function of how the I/O, C/D and MSG lines are driven. In this

thesis we will be using a SCSI implementation that sends data

only.

The SCSI is used here as a design example for the

implementation of design into an FPGA. It was chosen because

the design performance of such a device using other

technologies is known providing a good comparison of FPGA

design performance with other design implementation methods.

The SCSI possesses characteristics that would lend itself as

a test case for FPGA design implementation.

32

IV. THE DESIGN PROCESS USING FIELD PROGRAMMABLE GATE ARRAYS

A. OVERVIEW

Information contained in this chapter is derived from

Reference 1. In this chapter, the typical design cycle using

the XILINX Development System to implement design into FPGAs

is discussed in detail. The purpose of this discussion is to

provide familiarization with the process so that the actual

design example in Chapter V may be presented effectively.

Implementation using FPGAs allows the logic designer to

realize small to medium sized designs that have in the past

been relegated to implementation into custom (and expensive)

Application Specific Integrated Circuits (ASICs). The FPGA

allows the designer to inplement designs with the flexibility

of being able to modify those designs quickly and in-

expensively. This design implementation into method allows

the designer to come up with a logic design using industry

standard schematic capture packages or design description

languages. Through the use of software conversion, those

designs can be mapped into a fully programmable array of logic

cells. Once this mapping is complete, it can be routed

(interconnected) in such a way to optimize circuit

performance. Once the design has been mapped and routed, it

must be converted to a bit stream or a PROM file of

33

configuration data for actually programming the LCA. One of

the main issues that will be looked at in this thesis is the

issue of design verification both prior to and after routing.

In the past, timing simulation could be run on designs that

had been described via schematic capture. The issue with

FPGAs Is what effect does LCA routing have on circuit

performance. This will require backannotating the routed LCA

design to incorporate routing delays into the timing

simulation. This is a major issue that this thesis is trying

to resolve. Additionally, the question as to whether or not

hand routing will be required to optimize design performance

either from the aspect of meeting the required timing

considerations or to accomodate the design into the LCA of a

chip. Router constraint issues will also be looked at. The

question of what needs to be done to implement previously

tested designs in a modular fashion into FPGAs will also be

examined. Design implementation will be conducted using a

personal computer as well as an engineering workstation. The

differences and advantages of the design platforms will also

be studied.

B. DESIGN CYCLE ON A PERSONAL COMPUTER

The design platform used was an IBM Personal System/2

Model 50 with 3 MB of RAM and a 20 MB Hard Drive. This system

was adequate for small efforts such as training and

familiarization with the design process. Memory upgrade is

34

required however, for more involved designs. Table II shows

the memory requirements for various design and device

Table II LCA DESIGN MEMORY REQUIREMENTS (from Ref. 1]

2000 gates 2064, 2018, & 3020 LCA 2.50 Mbytes
3000 gates 3030 LCA 3.25 Mbytes
4200 gates 3042 LCA 4.00 Mbytes
6400 gates 3064 LCA 5.25 Mbytes
9000 gates 3090 LCA 6.50 Mbytes

Note: Other resident programs not included, 0.5 M B less without XDM.

complexities. The beginning of the design process involves

the initial layout of the design. Two methods are available

to support this. The two design entry methods supported by

the XILINX Development System are schematic capture and design

description language entry. Most popular schematic capture

packages are supported in this development environment.

Schematic capture is used to layout the design while a design

description language is used to describe a design and place

that description into a Programmable Array Logic (PAL)

circuit. The XILINX Development System supports either or

both of these methods. The schematic capture method utilizes

a standard library of parts in conjunction with a schematic

editor to build a schematic file whereas the design

35

description language approach uses a text editor to describe

the PAL design. It should be noted that design description

entries for PAL may be included in schematic designs, but a

"FILE = " must be included in the PAL symbol to cross

reference the description language text file to be

incorporated into the design. In this thesis, FUTURENET was

used as the tool for schematic capture. At this point timing

simulation of the design is prudent prior to taking the design

into the XILINX Development System. For instance CADAT could

be used to simulate the design functionality. However, due to

the difficulty of use and unreliability of that simulator, the

choice was made to reconstruct the design schematics in the

Mentor Graphics Development System with NETED and run timing

simulation in QUICKSIM to verify design functionality. Once

the design verification was completed satisfactorily, then the

FUTURENET design schematics could be implemented into the FPGA

via the XILINX development system on the PC.

The heart of the XILINX Development System is the XILINX

Design Manager (XDM). The XDM is a shell that manages all

software functions. Unfortunately, it took up 0.5 MB of user

memory. Due to limited memory resources XDM could not be run

concurrently with the XACT program or APR program when a user

tries to place and route designs of 2000 gates or larger. The

XACT program run by the XACT Executive is used to make the

configuration bit file and allow editing of LCA files

manually. The APR program is used to automatically place and

36

route designs in the LCA. In the first case, XDM must be

suspended and XACT run separately while in the later case APR

must be run from DOS. These inconveniences could be

eliminated by upgrading the amount of user memory in

accordance with Table II.

The first step which is necessary to implement the design

is to convert all schematic file (which could be hierarchical)

and PAL design files into XILINX NETLIST FILES (XNF). With

regards to schematic files, FUTURENET interface outputs a PIN

file that is converted to an XNF file by the PIN2XNF program

while the PAL design PDS file is converted to an XNF file by

the PDS2XNF program (see Figure 24). The result is that all

design files have been put into the XNF format. The PAL

design XNF file is additionally optimized by the XNFOPT

program to reduce the combinational logic contained in the

design so that it will fit better in the LCA. The result is

that an optimized XNF file is generated from the PAL design

file (see Figure 25). The next step is to map the XNF files

into Logic Cell Array (LCA) Configurable Logic Blocks (CLBs)

and Input/Output Blocks (IOBs) (see Figure 25). Once all of

the XNF files have been mapped they are merged into one map

file by XNFMERGE (see Figure 26). The final map file is then

put into the LCA file by the MAP2LCA program (see Figure 27).

At this point the LCA file is "unplaced" and "unrouted", which

means that there have been no IOBs or CLBs chosen and no

interconnect performed. The next step is to place and route

37

/

r _ / rug g•SX I

PAUe .{jI I~m) ., .2 , . J

7

TrITLE Drco r', -_D

0A J AUTIIQP

C14C I P COtr VAL10116
I In'Ut Pi - 60d

PA AO

___IC -.fl t -ou t. tt

3710 000 /11 ZIS GO dV'
F, i STING TWO dl I dO

It NO T"0t r dl * dO'

OVAI ONS

ZRO - ONE 6 000

Figure 24 Design Entry to XNF translation (from Ref. 1]

the design. There are two ways available to place and route.

The first is an automatic place and route which uses an

annealing algorithm to get the best performance from the

design. There are three routing options available in the

automatic router for the best performance:

" Use router directly

" Use a constraint file

" Use a guide file

In using the router directly, there are three router options

available: Rl, R2 and R3. R3 which is delay driven is the

38

MAI

mm,O

SC', A I', I 09 *'*.

//

>- L D

Figure 25 Optimization and mapping [from Ref. 1]

slowest of the three but results in the lowest delays and

unroutes. R1 is the fastest router of the three. The use of

the constraint file option allows the user to supply a user

constraint file "filename.cst" to a provide direction to the

router. This file is used in addition to any schematic

constraint file "filename.scp" that may exist as a retult of

the processing of the schematic by the XILINX system. The

user constraint file overrides any schematic constraint file

if possible. The -C option must be selected when running APR

to utilize this option. The guide file option allows the user

39

MAr

XMA- * ~*^ ~

"IF -_______ I AN --- -h- S,,h dI-ilo-e/

ED V-
opiM,, to

The r-ged desog. wOnlanS the CL$ and *0s lot the ItnlA, deSin

Figure 26 Merging of mapped files [from Ref. 1]

to incorporate design changes but use the placement and

routing of the old design. This option utilizes a block, pin,

and net name matching scheme. If a match occurs between the

new design and the guide file, the guide file placement and

routing information is used. To use the guide file, the -G

option must be used when APR is invoked. Manual routing can

also be performed using the EDITLCA program from the XACT

design editor (see Figure 28).

Once a placed and routed LCA file has been generated, the

MAKBITS program (see Figure 29) which is run from the XACT

Executive will be used to generate the configuration bitstream

40

I,+ C.oA+l

,
I 1eu2

a CyCD 0 = Oa0

0 0 000m

0 0 0 o0 0 0
0 00U000000

0 0 .. .0 o o c o m o o o o o o o o c o c c O-

nwiafly (belwoe Plac@ 3 l01 RoUle) Ih tCA deSgn Is
' wlo0,ed and 1he CoNg.,abe Logic and '0 binks ae

[ni In fasnino ioalinns

Figure 27 Translating to an LCA file (from Ref. 1]

which can be downloaded into the LCA to configure it. The bit

file can also be used to make a programming file to program an

EPROM (see Figure 30). An EPROM is a good choice because it

is inexpensive and reuseable and lends itself ideally to

prototype designs. The XILINX Development System supports

three programming formats:

MCS86 - Intel MCS-86 Hexadecimal Object

EXORMAX - Motorola Exormax

TEKHEX - Tektronix Hexadecimal

41

LCA C

ARC')ICA F ii
I rA F ft

6~ ro' corre' &SVMS~ kWeladh' plc"0

nd, rIno of ciuhCal lo wth IRS XACI
Design Edhlo' 15 I0OI~.ed bY API) w
ftfulomalkoally plaCelroule 111W ISSCCW*"

III -. n delsfq 11 .CSSaiY. 2"a4flI WIC'aO

XACI ej onr*9flAPR d@S01N IA p5sb

A Al~p placvd and ,o.led designl Wcoserlo Of Ape' fell
mnev of 20154 PC6III

Figure 28 Placing and routing the LCA file [from Ref.1]

These formats are industry standards and can be programmed on

very inexpensive PC based EPROH programmers.

The u~ext issue that needs to be examined with regard to

implementation is how will the design perform once it has been

placed and routed into an LCA. one method is to run the

program LCA2XNF on the routed LCA file. This produces an XNF

file which contains routing delay information (see Figures 31

and 32). This XNF file can then be converted to a simulator

netlist for use in some simulator such as CADAT or SILOS.

Since it was already determined that CADAT was unreliable and

difficult to use and SILOS was not available, this back-

annotation problem will be solved at the engineering

42

J on~u~l~ 1 811I I,.CM~nI .
I

Verl~all

P .

t t I Ii o nOlO 000000Ol11100111 11001MO1 I I I T" nu W ~e roma~s ihe Wary comoio n dala wh
OO11 11110111] II I 110 0191 I l ll II 1 o lgf ares an I CA to pedo-m the deS.n Wic~lin

01111111101111 1011 11111

001111111111111111111111 1111011111111111

0111001101110111011101111011111110111111

1111111 1010000000000011i1001 110001001111

00111011110111111111111111111111111111I

00111111111111011111011t111101111111111

0111111011101110111111101111111011111110

0111111010110111011

ICA Co,1nllon BllslIelnm

Figure 29 Bitstream generation [from Ref. 1)

workstation level. Another problem that was not resolved at

all was the problem of real-time in-circuit verification as

shown in Figure 30. XILINX has an XACTOR real-time in-circuit

verifier. It is rather expensive and is unnecessary for this

thesis, but it could be purchased at some time in the future.

Additionally, there are several third-party vendors that sell

verifiers and prototyping boards for use in design development

with FPGAs. As an alternative a simple prototype board was

developed to attempt to do rudimentary testing of FPGA designs

(see Figure 33). The board supports an XC3020 FPGA operating

in Master Parallel Low mode with an 8KB or larger EPROM. To

use the board with another type of LCA will require a minimal

43

D-..- PC

1 n. IIO 3 (.X1. 13.1$. I ,o*Ic

fo.,.InMo' enl=i h11W LCA to, ck.uA V.,hcs000

___- C 'no P'flOM ng)

Co.-d InnjA4o Pod(' to

In-xoA V.

DS20

Figure 30 Real-time in circuit verification [from Ref. 1]

amount of redesign. Additionally, a demo board was provided

by XILINX that served to verify the development system

installation. Several sample designs (e.g., a counter) were

processed. The counter was downloaded into the configuration

memory as well as programmed into an EPROM. LCA configuration

and operation were observed to be correct from a macroscopic

viewpoint.

Figure 34 shows the overall big picture of the design

process on a PC. There are basically four elements:

44

I CA i '' 1

~ *~J 1 I~*SIAIO

n, IPNl , s1

I

g--. Design

Di~B! 7i-..--

LCA deskgns a.. sfrujhied Bl 1he physc l Ct8 leveI wdh w.orst case lins*
(NeIs "OSlde" CLBs ese nbi generafly accessed)

Figure 31 LCA backannotation (from Ref. 1]

* Design Entry

. Design Implementation

. Hardware Circuit Implementation and Verification

. Logic Simulation

On the PC we currently have the ability to do design entry and

design implementation. The logic simulation is reserved for

the engineering workstation.

45

Sin'J131l-. Atlows-5 s~
ifly3l1 undo, volst rase
ternperalure. volaQe, and
goocess Conditons

Fad, 1 0 t n 1/o i fr l On I ,, c n be obse ,e1 d w "h ie

Sise agl lo, G aphc or le.I o slbpbly 01 sIn ls -s genel led

In response to 0nr j stb ar los vi o, i 01 AC

perlorsance and logic behavor o desg

Figure 32 Simulation timing diagram [from Ref. 1]

C. DESIGN CYCLE ON AN ENGINEERING WORKSTATION

The design platform used for this variation was an Apollo

4000. The means for schematic capture of the design was

Mentor Graphics NETED. This is similiar to what was used in

verifying designs on the PC. The design process is virtually

identical to that on the PC. The overall design path is shown

in Figure 34. In this case however we have installed not only

the design entry and implementation tools, but also the

simulator. The overall functioning of the various XILINX

programs is the same as those on a PC. However, the

implementation is somewhat different. The file structure is

now UNIX-based vice MS-DOS based. This can cause consider-

able confusion and various error messages usually related to

the ability to find files. It must be understood that what is

happening is that operations are occuring across the MENTOR-

46

fill-il

I
I.

....,................ -|

Figure 33 XC3020 prototype board

XILINX interface. It is important to realize that when MENTOR

tools are being used, files in a UNIX directory are being

accessed. On the other hand, the XILINX tools are based on

direct file accesses of the current working directory just

like in the MS-DOS environment. As a result, continuing care

must be taken in the design process to ensure you have'access

to the files you need. The XILINX Development System has the

characteristic of calling various subroutines from the Mentor

portion of the software. It is therefore crucial that all

authorization lists for both parts of the system (MENTOR and

XILINX) be kept up-to-date or else the whole system will be

47

DESIGN I,ENTRY ''" ,'

IMPLEMENTATIONl

HARDWARE .,...
CIRCUIT

& VERIFICA ION,

Figure 34 Apollo Workstation Design path [from Ref. 1]

rendered unusable.

The design process starts by using NETED to capture the

design schematically. PAL design files are allowed just like

on the PC design platform. When using NETED in conjunction

with the XILINX development system a different library will be

used. LCA KETED is invoked which uses NETED with the]ca lib

library instead of the normal gen lib library. The Ica-lib

consists of the XILINX macros and parts for use in designs.

The development system allows the construction of macros for

48

a ricL

Mt

FA desin wat fr

WJI (AI

E

0

use as additional building blocks if required. Once the

design is laid out, it can be expanded and extracted using

LCAEXPAND SIM for direct input into QUICKSIN logic

simulation, or can be expandei using LCA EXPAND for input into

the design implementation software (see Figure 35). It is

recommended that QUICKSIM be run on the design to verify the

functional operations prior to taking it into the XILINX

environment. To take the design across the interface boundary

EREL2XNF is run which converts the ".erel" file from the

MENTOR environment to a ".xnf °" file in the XILINX environment.

At this point it should be obvious to the designer that there

is no design manager to guide one along the XILINX design

49

path. Everything must be done manually from the command line

environment. There is also an error in the XILINX

documentation (see Figure 35) which implies that there is an

XNF2LCA program like that in the PC environment. This is not

the case and the conversion from the ".xnf" file to the ".Ica"

file must be done manually each step of the way. This will

require at a minimum the running of XNFMAP and MAP2LCA. If

there are any hierarchical drawings or PAL design files,

PDS2XNF, XNFOPT, XNFMERGE and XNFDRC may also need to be run

at the appropriate time. Once the ".Ica" file has been

created it can be placed and routed into an LCA by the APR

program resulting in4 a routed ".Ica" file. This routed ".Ica'

file can then be used in MAKEBITS and MAKEPROM to generate the

configuration program data required to actually configure the

LCA to the design. The next step will be to backannotate the

routed ".Ica" file and input it into the simulator for design

verification. This is accomplished by running LAC2XNF to

convert the routed ".Ica" file to an ".xnf" file. LCATIMING

is then run which provides a file "simsheet.erel" which can be

input into QUICKSIM. This is an important step. This allows

the simulation of the design once it is place and routed in

the LCA. Figure 36 shows the backannotation process. The

significance of this is that by comparing the pre-routing and

post-routing simulation results actual design performance

inside the LCA can be verified.

50

dRouted LCA File which contains
.C worst-case net delays

LCA2XNF Converts an LCA into an XNF file

design File which contains worst-case

.XNF net delays and describes logic
in terms of gates that can be
modeled for simulation

LCA TIMING Generates Simsheet schematic
CUA _ I 14 G and expands it for simulation.

SIMSHEET.EREL Simsheet contains one symbol,
simsymbol. whose underlying
logic is described by design .XNF

UCKSIM Simulate Simsheet schematic

Figure 36 Backannotation of LCA design (from Ref. 5]

D. A COMPARISON OF DESIGN PLATFORMS

The engineering workstation as compared to the PC is a

superior platform with regard to performance and degree of

integration. The PC serves as a better design platform for

the first time user. The MS-DOS file system is easier to

understand and the design entry and design implementation

interface are more accurately documented. The PC platform

software is obviously more mature and the design manager which

is totally menu-driven makes the design process a lot easier.

There are some serious memory limitations in our PC

environment. The Apollo workstation is approximately five

times as fast as the IBM P/S 2. On large designs this would

be a big advantage.

51

V. SCSI - A DESIGN EXAMPLE

A. OVERVIEW

The first step in doing any design is to break the design

problem into small pieces that can be easily understood. In

the SCSI standard there are many options available, and most

available characteristics are implementation dependent. The

implementation chosen for this thesis is a device capable of

carrying out five basic SCSI functions. The device must be

capable of detecting when the SCSI bus is free and begin

arbitrating for the bus after the appropriate delay. The

device must be capable of selecting a target. In the case

when it is a target, it must be capable of acknowledging that

it has been selected. The heart of the SCSI is an eight bit

data bus that must be capable of transfering data in both

directions. For simplicity, the assumption is made that this

device has a SCSI ID of 4, that is, bit 4 is equal to 1. In

order to simplify the design and to more easily understand all

of the SCSI functions, five circuits were drawn seperately in

both FUTURENET and MENTOR GRAPHICS environments. This allowed

for timing simulation of the MENTOR GRAPHICS drawings with

QUICXSIM to verify individual crcuit operation. The designs

would then be implemented on a PC using the FUTURENET drawings

via the FUTURENET/XILINX interface. Initial implementation

52

was done using XC2064 parts but a final implementation was

done using XC3020 parts. The five circuits involved in this

design are:

" BUSFREE which detects when the SCSI bus is free and
signals arbitration to begin after the appropriate time
deliy.

" ARBIT which arbitrates the SCSI bus to the device with the
highest SCSI ID bit.

" SELECT which selects a target for a SCSI initiator.

" SELTAR which allows a SCSI device to acknowledge that it
is a selected target.

" INFOTRAN which allows information to travel bi-
directionaly to and from a SCSI device as well as not
interfer with other SCSI devices on the bus.

It should be noted that for simplicity, only the data transfer

will be considered. Message and Command transfers would only

involve the target driving two control lines to the initiator.

Once the design implementation was completed on the PC for

the five circuits, the design was redone in the engineering

workstation environment. This time however, backannotation

was performed on the implemented design to see the effects of

LCA placement and routing on design performance speed.

B. INITIAL DESIGN LAYOUT

As previously discussed, the overall SCSI design was

broken up into five functional circuits. A description of

what these functions performed was specified and transformed

into schematics. The schematics were laid out using Mentor

53

S.1"t C.,t:O 1IIP flMJI[IOWS I ill S LtU fur InSIC AnwiKcoD OtIL

S y

C L k E

Figure 37 NETED schematic of BUSFREE circuit

Figure 38 QUICKSIN' timing diagram of BUSFREE circuit

54

Select C-..t:O HIrt? fl IIDOWS f f It~ I S1 I Ur I fI SIC flAovn~c!D ~ to

Figure 39 NETED schematic of ARBIT circuit

Figure 40 QUICKSIN timing diagram of ARBIT circuit with
arbitration lost

55

11ffIIM-
Figure~G. 41QOw I imn iuain fABTwt

arbitration won

SeI ct.? rar fI;nIsfr" ISlr At lA~A~A i

vl-_

Figure 41 NETEDSI chmticin of uato SEEC circuitit

56

Figure 43 QUICKSIM timing simulation of SELECT circuit

S.I~ct c..,.t.O HELP fl Minus fI Iti(I St IJY' f sit WN VC(O ImRD

I OC>I

08(710)

Figure 44 METED layout of SELTAR circuit

57

M , 10 I'll SE call,
19 851 SEL DIIII)

V-1, US., I- L
v .. To.. ".. III

It. I
P '10 ?1.1. 0

'III:,,: I
ou. 20

Figure 45 QUICKSIM timing of SELTAR circuit when selected

1.4
0111.11- f o il

ol"M sit-
sit MWO1.1 Y.'rk
folit MW

...... nobill

V-Itsq S1.00 It.,

N.C.. 91-V

2ir
W.,

111-V
to

to- 1'.. 10

20 20

Figure 46 QUICKSIM timing of SELTAR circuit when not
selected

58

$.Itt Eo..t:O HELPU WINDOW4S I M~ %I IU ISIC ff fiDn3CO wtUI

Figure 47 NETE schematic of NFOTRAN circui

,,~I710

-DI

bi 012

Figure 47 UETEDI tchmin iuatin of INFOTRAN circuit

59

Graphics NETED and tested using QUICKSIM to verify

functionality of operation and initial timing of the five

circuits. More accurate and meaningful timing can only be

simulated after the design is backannotated. Figure 37 shows

the NETED layout of the BUSFREE circuit while Figure 38 shows

the QUICKSIM timing results. Figure 39 shows the NETED layout

of the ARBIT circuit while Figures 40 and 41 show its timing

characteristics with arbitration both won and lost. Figures

42 and 43 show the SELECT circuit layout and timing while

Figures 44, 45 and 46 show the SELTAR circuit layout and

timing. Finally, Figures 47 and 48 show the main SCSI bus

INFOTRAN layout and timing. A detailed analysis of timing

performance will be examined later in this chapter. This

initial layout was done using components from the gen lib

components library within NETED. This posed a problem in

later development stages since the gen_ lib components

possessed slightly different characteristics than the XILINX

macro library or FUTURENET components and as a result some

design changes were required. A good example of this was the

tri-state buffer which was a crucial component in the design.

In the Mentor Graphics environment, a low enabling signal

caused the device to go to the high impedance output condition

while the XILINX macro three-state buffers operated in the

opposite manner with a high enabling signal causing the device

to go to the high impedance output condition. Once the

designs were laid out and were operating satisfactorily in

60

simulation, they were taken for implementation into the PC

environment.

C. DESIGN IMPLEMENTATION ON THE PC

The implementation process involved taking the circuit

schematics and redrawing them in the FUTURENET environment.

-- i

Figure 49 FUTURENET schematic of BUSFREE circuit

Figures 49, 50, 51, 52 and 53 show the BUSFREE, ARBIT, SELECT,

SELTAR and INFOTRAN circuits as drawn with FUTURENET. These

designs were originally done using XC2000 family library.

When they were converted to XC3000 family designs one item

that had to be changed was the addition of the global clock

buffer (GCLK). This was forced by the software. If an

external clock was being used to toggle more than two flip-

flops and GCLK was not being used, the software would flag a

design error and identify the nets effected. It is

recommended that the net with the highest fan-out be the net

61

to use the GCLK resource.

Figure 50 FUTURENET schematic of ARBIT circuit

On the PC, the capability to functionally simulate design

performance was not available. As a result, once

imp.ementation was completed, there was no way to determine

wha: effects rr'"ting ind placement into the LCA had on design

performance. The initial design implementation was done using

XC2064 LCAs which had the capacity of 1200 gate designs.

After upgrading system the memory to handle larger designs,

the designs were reimplemented using XC3020 LCAs. As

previously mentioned, at this point a design error was

identified. The XC3000 family LCAs have a special global

62

II

F-_7
-... r.

Figure 51 FUTURENET schematic of SELECT circuit

clock buffer (GCLK) which is used to minimize the eftects of

fan-out on clock signals caused by trying to drive many f lip-

flops. An alternate clock buffer (ACLK) is also available for

the same purpose. The software forces the designer to use

these resources. It is recommended that the sources with the

highest fan-out be given the GCLK and ACLK resources,

Implementation on the PC platform is quite simple. it

starts with running the XILINX Design Manager (XDM) which is

essentially a design environment shell capable of calling all

design tools from one environment. XDM is initially run from

DOS and is setup in accordance with a user specified profile.

63

Figure 52 FUTURENET schematic of SELTAR circuit

64

The first menu DesignEntry is used to call an entry program

(i.e., FUTURENET) and the associated library files. Trans-

lation of the SCSI design files is performed automatically by

XMAKE which takes the design file, for example, from

"busfree.dwg" which is a FUTURENET drawing to "busfree.lcall

which is an unrouted ".lca" file. The PlaceRoute menu allows

the running of APR which takes the unrouted "busfree.lca" and

creates a routed "busfree.lca". The choice was made to

utilize an EPROM to hold the configuration data for the LCA.

This is accomplished by running the XKCT program. Initially,

memory constraints prohibited the running of XACT from the XDM

shell. The PC used in this thesis has been upgraded to 4 MB

which alleviates this problem. The primary purpose of the

XACT program is to manually edit LCA routing, but it also acts

as the shell for two other important programs which are

Makebits and Makeprom. In this example, the routed

"busfree.lca" file is converted to a configuration bitstream

file "busfree.bit" by the Makebits program. This bitstream

was then converted to a EPROM programming file "busfree.mcs"

which is in Intel Hex format (MCS-86). The next thing to

accomplish was actually programming the EPROM. Two methods

were used to accomplish this. An expensive DATA I/O universal

programmer was used. It could however only work on certain

type of EPROMs since it did not support some of the newer CMOS

technology EPROMs (e.g., AM27C64). The second method involved

the use of an inexpensive PC based EPROM programmer. The

65

strategy in this method was to convert the EPROM programming

file to pure binary code and to download it to the EPROM

directly. This was accomplished with a program HEX2BIN which

was provided with the programmer. One final issue that was

looked at with regard to EPROM programming was the starting

address of the configuration program. The MakeProm program

allow the designer to specify the address at which the

configuration program should reside. For example, 1853 bytes

are required for an XC3020 LCA. Thus, an 8 KB EPROM could

hold four seperate configuration programs. It should be noted

that the size of the configuration program is a function of

the actual LCA device used in the design and not the design

itself. Both EPROM programming methods used allowed this

feature to be exploited. They both allowed the configuration

program to be stored at any address in the EPROM. This design

example was not overly complex so that this feature was not

utilized. However, it could be very useful in a more complex

design.

D. DESIGN IMPLEMENTATION ON AN ENGINEERING WORKSTATION

For this part of the work, design was implemented

utilizing an Apollo 4000 series workstation with Mentor

Graphics tools and the XILINX Development System software.

Aditionally, an interface module was also installed which

provided the bridge between the MENTOR tools and the LCA

design implementation. The design process involved the

66

following design methodology:

1. Using LCANETED which uses XILINX macro libraries,
capture schematic.

2. Using LCA EXPANDSIM, prepare the design file for
QUICKSIM simulation.

3. Run QUICKSIM and thoroughly test the design.

4. Run LCA EXPAND to EXPAND the design file in preparation
for leaving the Mentor Graphics environment and entering the
XILINX environment.

5. Run EREL2XNF to convert the Mentor Graphics design file
to a XILINX Netlist File (XNF). A specific LCA part number
must be provided at this point.

6. Run XNFMAP and MAP2LCA to convert the .xnf file to an
unrouted .lca file.

7. Run APR to place and route the design.

8. Run LCA2XNF on the routed design which will provide an
XNF file with routing delay information.

9. Run LCA TIMING on the backannotated XNF file which
prepares a new SIMSHEET for use in QUICKSIM.

10. Run QUICKSIM to verify design performance of the routed
design.

11. Once design performance is verified, run MAKEBITS and
MAKEPROM on the design file to get the configuration
bitstream and EPROM programming file.

In this design example, this methodology was followed for

each part of the SCSI design. The exception being, when

generating the configuration bitstream, the EPROM programming

file was only done for the completed design. In doing the

design in this environment, several design errors were found

as a result of being able to test the designs after routing.

These errors were mainly caused by the fact that initially

67

running QUICKSIM on a design file resulted in zero delays.

However, the delays that were really there as a result of

placement and routing in the LCA often caused signal

conflicts. By breaking up the SCSI design into five

functional blocks and thoroughly testing them in QUICKSIM both

before and after routing, a much clearer view of the SCSI

dsign characteristics was obtained. Also, by looking at

smaller blocks of the design, a better understanding of LCA

performance for design implementation with regard to routing

delay effects was aquired.

The first part of the design that was attempted was also

the most simple. The BUSFREE circuit merely was to detect

when the SCSI bus was free and signal the beginning of

$,Ie~t Co.-tlO I ii'IE MIN1)OWS Fl 111 St [UPW BASIC N AVANCEL MEIL

- A

-- -__ _________Z_;J-4

Figure 54 LCANETED schematic for BUSFREE circuit

68

Figure 55 Timing simulation of unrouted BUSFREE circuit

arbitration after 400 ns. Figure 54 shows the BUSFREE

circuit. Figure 55 shows the timing for the unrouted design

which shows the BUSFREE signal going high 400 ns after the BSY

and SEL signals are both low. Figure 56 shows the timing

simulation of the design that has been backannotated from the

routed design which shows the BUSFREE signal going high 436 ns

after BSY and SEL are both low. The extra 36 ns is a result

of the routing but will not have much effect on performance

since this design will just take a little longer than

specified to begin the information transfer phase. Figure 57

shows the schematic for the ARBIT circuit which puts the SCSI

ID on the SCSI bus at the beginning of the arbitration phase.

69

-~~ ~ ~~7; .1 .~ l~l .q F Mp

Figure 56 Timing simulation of routed BUSFREE circuit

S-1It C--,t: I KL Utt lI~NDOWS 11 FILE 1 StIJP 11 BSIC 0 OAD o WE TE

Figure 57 LCANETED schematic of ARBIT circuit

7P

After 800 ns BSY is asserted and after 1200 ns SEL is asserted

provided the arbitration was won. If arbitration was lost,

BSY would be negated in lieu of asserting SEL. Due to a

misinterpretation of the SCSI standard, the 1200 ns SEL

Fat_ C |S u

Irate0

Figure 58 Timing simulation of unrouted ARBIT circuit with
arbitration won

assertion should be 1200 ns from the time that BSY is asserted

making the SEL assertion 2000 ns from the time the arbitration

phase begins. This error was corrected in the final design by

adding four flip-flops clocked at 200 ns periods which

increased the arbitration time by 800 ns consistent with the

SCSI standard.

Figure 58 and 59 show the timing simulations of the

unrouted ARBIT circuit when arbitration is won and lost,

71

m33

Figure 59 Timing simulation for unrouted ARBIT circuit with
arbitration lost

Figure 60 Timing simulation for routed ARBIT circuit with
arbitration won

72

respectively. Figure 60 and 61 show the timing simulations of

the routed ARBIT circuit for arbitration won and lost,

respectively. An additional 49 ns is seen in the BSY and SEL

Figure 61 Timing simulation for routed ARBIT circuit with

arbitration lost

times due to routing delays. This is not a real problem since

this just means that the SCSI will spend an extra 49 ns

arbitrating the bus. Since the design arbitration time is

2000 ns, that extra time due to LCA implementation is

insignificant. FiguLe 62 shows the schematic for the SELECT

circuit which puts the logical OR of the SCSI ID and the

TARGET ID on the SCSI bus. The selection phase begins when

the SEL signal is asserted as a result of winning arbitration.

Figure 63 shows the unrouted SELECT circuit timing simulation

73

S~~ o~tO IILI - INIJOMS 11 1(1 A S- U l ESIC 11IPIJ(D

Figure 62 LCANETED schematic for SELECT circuit

FMd

Figure 63 Timing simulation for unrouted SELECT circuit

74

which puts the required information on the SCSI bus without

Figure 64 Timing simulation for routed SELECT circuit

delay. Figure 64 shows the routed SELECT circuit timing

simulation which shows a 60 ns delay in getting the IDs on the

SCSI bus.

Figure 65 shows the schematic for the SELTAR circuit which

acknowledges the SCSI device selection as a target by

asserting the BSY line. Figure 66 shows the unrouted SELTAR

circuit timing simulation which shows the BSY line-being

asserted immediately upon selection whereas Figure 67 shows

the routed SELTAR circuit timing simulation that shows BSY

being asserted 67 nS after selection. This completes the

verification of the BUSFREE, ARBITRATION and SELECTION phases

of the SCSI operation.

75

S.I't CovO j 1111 l IowU i Ii i v I A SIC ~IflOVANrr10 It a1

k'

Fiur 6 LANEEDsceatc f ETA crci

Figre66Tiin siultin f nrute SLTR irui

76K

Figure 67 Timing simulation of routed SELTAR circuit

-S.Wk C..t. KELP I OS Fu LE S1IUP SASIC RO I 10YA N~ I 11Do

Figre68 LCANETED schematic of INFOTRAN circuit

77

kr4FDCJTQ V n D142-DI.-I DIk4 Ojh 0199 0147-00J72 D:411 COUT4_0003 DOUT9 DOUTT
a 0 1. 0. It 0. 1. 0. Is 0 It at is 0$ 1. 0 1 1 , 0,

0 at It It at it It 09 It U 11 1, 0; 'Izz 02
a

0, 0. 1., a, I, Doll

It 10 01 111 .1 It 1111 1 11. 1. 11

I'll *III I,, I'll I", all,
I 1 0 8 It at 11 Ot Is 01 11 01 it 01 It 01 it Ot 11 01

-it M - I I'll - UUTC.1 OUIS.1111.'U, -aDI 01
ODW.

Figure 69 Timi g simulation of unrouted INFOTRAN circuit

nwol.1--poulo DCUIL DN2 Dill "DO. WVQUIJ P.- DQ . D.111, 1, 0, 1, 0, 1,

L DIRI

DOM

j

I a I a I a I o I a 1 0 1
MAL MO. I I I I I 1 0 1 1

.1 It. I I I I a, I a A 0 . . I .
6.11, a, .1 1 1 1

10 It .11 1. 11 . . 10 11 1 1 .

0 If C? it 0. It It I a 1 0 1 0

Q;
Q*1 1 0 1, a

-0 %S -DI'7 OU, 1 -04
.41,01.1 "COV) COVT5

OYD1.2 '00014 'DOUT?

V02 I

IQ I
101. DOOT I
U, "3

FOIC. to I

"'U"11*0
to a

Figure 70 Timing simulation of routed INFOTRAN circuit

78

Figure 71 LCANETED schematic for completed SCSI design

79

Nlc rii I - IIIIIIIII 00a

Figure 72 Timing simulation of urouted SCSI circuit

8to

Figure 68 shows the schematic of the INFOTRAN circuit.

The direction of data transfer is a function of signal 10.

When 10 is low, data will be sent from initiator to target,

and when 10 is high, data transfer will go from target to

initiator. The REQ signals data transfer to start and the ACK

signal indicates the presence of valid data on the data bus.

Figure 69 shows the timing simulation of the unrouted INFOTRAN

circuit which shows bidirectional data transfer as well as the

REQ/ACK handshake. A 100 ns REQ/ACK handshake delay was

chosen to account for the cable skew and deskew delays (55 ns)

plus the delay required by the SCSI standard as well as

anticipated routing delays. The goal was not to acknowledge

the REQ assertion until at least 55 ns after valid data is on

the SCSI bus. Figure 70 shows the timing simulation of the

INFOTRAN circuit which again shows a bidirectional data

transfer and the ACK being asserted 60 ns after valid data is

on the SCSI bus which is consistent with the 55 ns delay

required by the SCSI standard. Upon completing thorough

testing of all parts of the SCSI the parts were put into one

schematic for implementation into an LCA. Figure 71 shows the

completed design. Multiplexors were used to route different

types of data to the external SCSI bus depending upon the

state of the machine. Specifically, during the arbitration

phase the SCSI ID goes to DBO-DB7 while in the selection phase

the logical OR of the SCSI ID and TARGET ID is directed to the

SCSI bus. During the information transfer phase data to

81

(from) the initiator is sent to (received from) the SCSI bus.

Figure 72 shows the timing simulation for the unrouted SCSI

design. In this simulation, the bit pattern "00001000" was

used for the SCSI ID while the TARGET ID bit pattern was

"00010000". The data to be transfered by the SCSI during the

information transfer phase was "10101010". These bit patterns

were chosen in order to minimize the number of traces that had

to be monitored in QUICKSIM to ensure proper operation of the

SCSI. In this example, DB3 and DB4 were monitored. During

the arbitration phase, the SCSI ID is placed on the SCSI bus

which corresponds to DB3 and DB4 of 0 and 1, respectively.

Once the selection phase starts, the SCSI bus carries the

logical OR of the SCSI ID and the TARGET ID which in this case

corresponds to DB3 and DB4 both equal to 1. The information

transfer phase begins with the asserting of REQ by the target.

In this example, DB3 and DB4 go to 0 and 1, respectively.

Other events of significance are the assertion of BSY at 1200

ns and the assertion of SEL at 2400 ns. During the selection

phase, 10 is released at 2400 ns, BSY is released at 2600 ns,

and SEL is released at 3000 ns. At this point information

transfer can begin. Figure 73 shows the timing simulation for

the routed and backannotated design. The same events 6ccur in

this simulation with the exception of a 49 ns delay. This

implies a 1.6 % increase in time for this design to go through

the bus free cycle, arbitrate the SCSI bus, and select the

target. Once selection has occured, data is placed on the

82

SCSI bus upon assertion of REQ by the target. ACK is not

asserted until 81 ns after all data on the SCSI bus is valid

which exceeds the SCSI bus hold time requirements (45 ns).

Specifically, the SCSI standard requires 55 ns for cable skew

and deskew delays plus a bus hold time of 45 ns prior to

asserting ACK to signal that there is valid data on the SCSI

bus (total delay is 100 ns). This implies the fastest rate at

which this design could transfer information is 5 MB/second.

This actual transfer rate in this design is 3.73 MB/second as

a result of the extra 34 ns delay between the REQ and ACK

assertions. This extra 34 ns delay could be alleviated from

this design by running FCLK at a higher clock rate (15.2 MHz

vice 10 MHz). This performance could be improved by using a

non-symetrical REQ/ACK handshake scheme. In this design a

conservative approach was used to handle the handshake. If a

non-symetrical handshake (i.e., when REQ is negated by the

target ignore cable skew and deskew delays) the bandwidth

could be doubled. This would involve some additional

combinational logic circuitry to handle this method since the

situation of transfer from target to initiator would be

reversed. Making the REQ/ACK handshake symetrical transfers

in both directions are handled by the same circuitry. The

tradeoff was simplicity for bandwidth.

Once the SCSI design has been implemented into a placed

and routed ".Ica" file, it must be converted into a bit

stream and then programmed into an EPROM. On the Apollo

83

L L

.

ii' L ~ J I

igr 74 L lcmn n otn fSS e i

mod sic hrIs.odsg angr nte oktto

eniomn thr lois ocpblt o rpial s

IDTLA To dotiteA afl utb-rnf dit

the PC env~~~iomn.Fgr 4sosth ie"cila fe

* r I84

being transfered to the PC which is then brought into the

EDITLCA program. Once in EDITLCA, the design can be edited to

change routing. This should not be done by an inexperienced

designer or someone without a detailed knowledge of LCA

architecture.

Once the SCSI design was successfully placed and routed

with a satisfactory test cycle run, it was noted that the

overall delay introduced by the technology was 49 ns. This

corresponds to the SCSI cycle completing its bus free,

arbitration and selection phases, and is prepared to transfer

information. In testing the various parts of the SCSI, it was

noted that the BUSFREE, ARBIT and SELECT circuits introduced

a delay of 36 ns, 49 ns and 60 ns, respectively. This would

lead to a total of 145 ns delay. This implies that the

placement and routing algorithm is quite efficient in

optimizing design overlap.

E. THE DESIGN VERIFICATION PROBLEM - PROTOTYPE VS

BACKANNOTATED SIMULATION

Both prototype and backannotated simulation are valid

methods of design verification. Both methods have their

advantages and disadvantages. In this thesis, the

backannotated simulation approach was stressed. However,

before having a totally valid design, prototyping would need

to be done. While backannotated simulation takes into account

technology introduced anomolies, it is not a substitute for

85

prototyping. One very attractive characteristic of the LCA

technology is that prototyping can be done at a much later

stage in the design process. This is because design flaws can

be so easily corrected. In other technologies, some design

prototyping would need to be done at an earlier stage in the

design. For example, if standard TTL parts were being used in

this design, before the entire design was combined, a

prototype of the individual design parts would need to be

completed. As part of this thesis, a prototyping board was

constructed which configured an XC3020 LCA in Master Parallel

Low mode. Once a design is implemented, the "design.rpt" file

will tell the designer which LCA pins are being used for which

signals. In this way, the designer will be able to actually

test the combinational logic of the design. This prototyping

board is however extremely limited in its resources. It

requires a +5 VDC power supply. The LCA was found to function

at a voltage as low as 2.9 VDC, but when trying to program via

a download cable, the DONE signal was never recognized going

high so the download programming cycle never completed. As a

result, a +6 VDC power supply was used.

F. DESIGN CONSIDERATIONS

When utilizing this technology there is no substitute for

experience. In this discussion, the assumption will be made

that the design is being done in the engineering workstation

environment. In starting any design, it is important to keep

86

good documentation of what was done. This can be aided by

having a good file directory for all design work. It is also

important to keep track of what files have had what processes

performed (i.e. which ".lca" files have beer. routed). In

inputing designs into the XILINX development environment for

LCA implementation, it is very improtant that these designs

have been created with the XILINX macros and parts from the

supplied libraries. While it is true that the XILINX macros

utilize components from the Mentor Graphics genlib, they

often attach properties which are necessary to process these

designs into the XILINX system.

87

VI. CONCLUSIONS

From the work done in this thesis, several conclusions can

be made. Implementation of designs into FPGAs is an efficient

method of implementing design work in a manner that is easily

modified either to correct design errors or to improve design

performance. The performance of designs implemented with this

technology was comparable, as shown in the SCSI design

example, to other currently available technologies. The

XILINX implementation tools, while flexible and able to accept

a variety of design input methods, required the use of the

XILINX supplied libraries to function properly. Direct use of

previously tested designs developed under the Mentor Graphics

development system was not possiLle without major rework.

This is not a fault of the XILINX development system but

rather a characteristic. Any previously developed designs

that were created prior to the installation of the XILINX

software must be redone utilizing the XILINX macro libraLies.

The XILINX macro libraries were extensive and fulfi-ed all

the needs of the design work done in this thesis.

Additionally, the capability exists to write additional macros

as desired. The XILINX development env.ronment greatly

reduced design development time. Minor design changes and

design debugging could be done in nearly real time with a

minimal amount of effort.

88

Design implementation worked best in the workstation

environment because of increased machine speed (a factor of

five) and fewer memory constraints which will allow for even

larger design work in the future. The PC design platform is

still necessary however, to utilize its graphics capabilities

for manually editing or viewing LCA layout since the XACT

program does not currently exist in the workstation

environment. The XILINX software was extremely stable but did

have a relatively steep learning curve. This was contributed

to by the fact that the documentation for the workstation

environment was first written for the PC environment and

partially updated.

The LCA technology studied in this thesis is an important

technology which should be persued with further study and use.

Speculation into the possible uses of this technology is as

wide as one can imagine. One very general use of this

technology would be in any application where space and/or

weight is a consideration; the LCA has the ability to be

reconfigured to perform more than one function. Another

possible use is when security is an issue; on power-down all

device characteristic information is lost making reverse

engineering of design virtually impossible.

89

LIST OF REFERENCES

1. XILINX Inc., The Programmable Gate Array Data Book, XILINX

Inc., San Jose, CA, 1989.

2. XILINX Inc., XILINX Presents the XC4000 Technical Seminar,

XILINX Inc., San Jose, CA, 1990.

3. R. Freeman, "User-programmable gate arrays," IEEE

Spectrum, pp. 32-35, December 1988.

4. Draft Proposed American National Standard for Information

Systems - Small Computer Systems Interface (SCSI), X3T9.2

Revision 17B, December 16, 1985.

5. XILINX Inc., Logic Cell Array Development System Reference

Manual Vol. II, XILINX Inc., 1990.

90

INITIAL DISTRIBUTION LIST

Copies

1. Defense Technical Information Center 2

Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 52 2

Naval Postgraduate School
Monterey, CA 93943-5002

3. Department Chairman, Code EC 1

Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5000

4. Professor Chin-Hwa Lee, Code EC/Le 5

Naval Postgraduate School
Monterey, CA 93943-5000

5. Professor Murali Tummala, Code EC/Tu 1

Naval Postgraduate School
Monterey, CA 93943-5000

6. LT Norman C. Messa 3

SMC 1225, NPS
Monterey, CA 93943-5000

91

